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ARTICLE INFO ABSTRACT

Keywords: Synthetic biology applied to industrial biotechnology is transforming the way we produce chemicals. However,
Retrosynthesis despite advances in the scale and scope of metabolic engineering, the research and development process still
Workflow remains costly. In order to expand the chemical repertoire for the production of next generation compounds, a
CAD software

major engineering biology effort is required in the development of novel design tools that target chemical di-
versity through rapid and predictable protocols. Addressing that goal involves retrosynthesis approaches that
explore the chemical biosynthetic space. However, the complexity associated with the large combinatorial
retrosynthesis design space has often been recognized as the main challenge hindering the approach. Here, we
provide RetroPath2.0, an automated open source workflow for retrosynthesis based on generalized reaction rules
that perform the retrosynthesis search from chassis to target through an efficient and well-controlled protocol. Its
easiness of use and the versatility of its applications make this tool a valuable addition to the biological engineer
bench desk. We show through several examples the application of the workflow to biotechnological relevant
problems, including the identification of alternative biosynthetic routes through enzyme promiscuity or the
development of biosensors. We demonstrate in that way the ability of the workflow to streamline retrosynthesis
pathway design and its major role in reshaping the design, build, test and learn pipeline by driving the process
toward the objective of optimizing bioproduction. The RetroPath2.0 workflow is built using tools developed by
the bioinformatics and cheminformatics community, because it is open source we anticipate community con-
tributions will likely expand further the features of the workflow.

Pathways prediction
Metabolic space

novel reactions not stored in metabolic databases. These latter tools
make use of retrosynthesis algorithms (Marchant et al., 2008; Moriya

1. Introduction

Despite the increasing number of small molecules that are biopro-
duced, the research and development process (R&D) is still costly and
rather slow. For instance, the metabolic engineering of artemisinic acid
is claimed to have taken more than 130 person-years and about 10
years to complete (Paddon et al., 2013; Keasling, 2014). Among the
challenges that industrial biotechnology is facing to deliver sustainable
solutions are 1) the reduction of R&D costs and 2) the bioproduction of
a wider palette of compounds. To address these challenges, computa-
tional/experimental strategies where alternative metabolic pathways
are first designed and assessed before being built and tested have been
proposed (see reviews (Medema et al., 2012; Copeland et al., 2012;
Hadadi and Hatzimanikatis, 2015; Lee and Kim, 2015)). While some
computationally-driven strategies make use of known metabolic reac-
tions albeit not necessarily in the same species (Rodrigo et al., 2008;
Moriya et al., 2010) others allow to design pathways that encompass

et al., 2010; Henry et al., 2010; Carbonell et al., 2011b, 2014a; Yim
et al., 2011; Liu et al., 2014; Campodonico et al., 2014; Hadadi et al.,
2016a).

Retrosynthesis algorithms take as input a set of metabolites, for
instance the metabolites in a growth medium or the metabolites of a
chassis strain model, and the set of target compounds to bioproduce.
Ideally the target compounds could be any molecule in the chemical
space. The algorithms generate retrosynthesis networks linking the
target compound(s) (the source) to the metabolites of the chassis strain
(the sink) through reactions.

Such retrosynthesis networks should be further processed to map or
extract information relevant for the biological application. For instance,
some algorithms can be applied to enumerate pathways (Carbonell
et al., 2012) and rank them based on several criteria including enzyme
availability and performance, product and intermediate compound
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Fig. 1. Example of reaction rules. A. Generalized reaction rules for the transaminase 2.6.1.1. B and C. BNICE rules and SimPheny rules were extracted from Henry et al. (2010) and Yim
et al.,, (2011). These are the only rules with EC number 2.6.1. In both cases the rules are represented by SMARTS strings. D. The reaction signature rule was computed using the MolSig
package, d represents the signature diameter. See Carbonell et al. (2013) for definition and examples of signatures.

toxicities (Planson et al., 2012) or the theoretical yield of the desired
compound (Campodonico et al., 2014; Carbonell et al., 2014b; Cho
et al., 2010; Liu et al., 2014). Interestingly, retrosynthesis networks
exploitation is not strictly limited to retrosynthesis. Applications have
been proposed to predict biodegradation routes (Hou et al., 2004; Oh
et al.,, 2007; Finley et al.,, 2009) in order to identify unknown com-
pounds from the underground metabolism (Jeffryes et al., 2015), to
predict the transitions of labelled atoms in metabolic networks (Arita,
2003; Hadadi et al., 2016b), and to design biosensing circuits for
compounds for which no direct biosensors are known (Delépine et al.,
2016). The main difference of the aforementioned applications lies in
the definition of source and sink compounds sets; the current paper
focuses on retrosynthesis but our solutions still stand for other appli-
cations requiring reaction network generation.

One issue users of retrosynthesis-based solutions are facing is that
algorithms and underlying data have not been fully documented and
released. In most cases, authors provided fine-tuned webservers
(Campodonico et al., 2014; Carbonell et al., 2014b; Jeffryes et al., 2015;
Hadadi et al., 2016a) often filled with pre-generated data that focuses
on some exemplar cases. Based on this information, it is difficult for
users to grasp methods’ limitations, to improve them, or to exploit them
for different uses. At a time when open-data principles gain more and
more traction (Schofield et al., 2009; McNutt et al., 2016; Haug et al.,
2017) we believe this lack of flexibility should be overcome.

In this spirit, we developed the RetroPath2.0 workflow on the
KNIME analytics platform (Berthold et al., 2008) to answer the need for
a modular and easy-to-use tool to predict reaction networks. Workflows
have several advantages over scripting languages. A graphical user in-
terface allows for rapid test and prototyping, even for users with little to
no knowledge in programing. For instance, parallelization of tasks is
inferred from workflow topology and does not need any special library
or technical knowledge from the user. Once configured, workflows are
readily deployable on all platforms where KNIME can be installed.
KNIME workflows are popular in cheminformatics to prepare and
analyse data, as shown by the number of extensions maintained by
users in this field (Berthold et al., 2008; Warr, 2012). Thus, metabolic
engineers benefit from a large panel of tools to analyse the chemical
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diversity and features of their data. As a matter of fact, RetroPath2.0
was developed using only community tools. We foresee it will make the
workflow easier to modify and at the very least a good proof of concept
of what can be done with workflows.

The current paper provides for the first time a simple workflow
encompassing the main steps of the retrosynthesis process. We hereby
review the main steps of retrosynthesis algorithms in order to demystify
their use and shed light on the shortcomings of current tools (Marchant
et al., 2008; Moriya et al., 2010; Henry et al., 2010; Yim et al., 2011; Liu
et al., 2014; Carbonell et al., 2014a; Campodonico et al., 2014; Hadadi
et al.,, 2016a). We then outline our proposed solution through several
applications in metabolic engineering and biosensor engineering. Ret-
roPath2.0 is available at myExperiment.org (https://www.
myexperiment.org/workflows/4987.html) along a set of reaction rules
and some classic metabolic engineering examples to test RetroPath2.0
features.

2. Theoretical background
2.1. Encoding reactions as reaction rules

The first challenge that retrosynthesis algorithms have to address is
linked to the way reactions are encoded. Most retrosynthesis algorithms
are based on reaction rules, but other strategies exist to encode reac-
tions (Kayala et al., 2011; Latino and Aires-de-Sousa, 2011). A reaction
rule generally depicts the change in bonding patterns when trans-
forming a set of substrates (reactants) into a set of products. For ret-
rosynthesis applications, rules are reversed such that one computes the
substrates from the products.

Several solutions have been proposed to code for reaction rules,
namely Bond-Electron (BE) matrices (Dugundji and Ugi, 1973), reac-
tion SMARTS (Daylight, 2017), RDM patterns (Oh et al., 2007), and
reaction signatures (Carbonell et al., 2013). Examples of coding systems
are illustrated in Fig. 1. We highlight below some key concepts to un-
derstanding reaction rule encoding in a retrosynthesis context.
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2.1.1. Enzymatic promiscuity

Reactions for retrosynthesis applications should be modelled with a
controlled degree of generalization for their substrates and products.
Indeed, reaction rules containing a full description of substrates and
products chemical structures cannot be applied on new compounds.
This is the case for classic metabolic models and database and their lack
of generalization prohibits the generation of novel pathways. The use of
generalized chemical transformations is required in order to be able to
predict new metabolic transformations. Such predictions are necessary
since reaction databases are not complete (Altman et al., 2013; Chang
et al., 2015) and side enzymatic activities are often underestimated.

This lack of knowledge on alternative enzymatic activities is cur-
rently a critical limiting factor for metabolic engineering since it has
been estimated that 37% of E. coli K12 enzymes have a promiscuous
activity for other substrates structurally similar to their main known
substrate (Nam et al., 2012). In order to be able to generate new me-
tabolic transformations (and new compounds) one thus needs to use
generalized reactions to model enzymatic promiscuity, i.e. rules that
can be applied to different substrates, and eventually on compounds
absent from the databases. For instance, BNICE (Henry et al., 2010;
Jeffryes et al., 2015; Hadadi et al., 2016a) and SimPheny (Yim et al.,
2011) use a collection of reaction rules that, as depicted in Fig. 1, can be
applied to any ketones (including oxaloacetate) since their encoding is
focused on the reaction centre.

2.1.2. Identification of the reaction centre
The simplest way of controlling a degree of abstraction for reaction
substrates is to encode the reactions around its centre. This requires

A
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compiling the list of atoms that belong to the reaction centre, i.e. atoms
that change their configuration when the reaction is applied (panel B in
Fig. 2). Atoms changing configuration are those attached to bonds that
are broken, formed, or are changing order, as well atoms for which
charge and stereochemistry is changing when the reaction is taking
place.

Reaction rules used in retrosynthesis generally require a solved
Atom-Atom Mapping (AAM, see panel A in Fig. 2) between the atoms of
the substrates and those of the products to identify the reaction centre
of the reaction (Hou et al., 2003; Hatzimanikatis et al., 2005; Oh et al.,
2007; Cho et al., 2010; Liu et al., 2014). The AAM problem is equivalent
to the Maximum Common Substructure, or the subgraph isomorphism
problem which turns out to be NP-hard (Chen et al., 2013). Avoiding
the use of AAM to generate rules is nevertheless possible in some cases,
as it was originally shown by a previous version of the RetroPath al-
gorithm based on fingerprint subtraction (Carbonell et al., 2014a) (see
Fig. 1).

Importantly, if encoding the reacting centre is necessary, it may not
be sufficient to properly define a reaction catalysed by an enzyme since
other atoms far from the reacting centre could be involved in the ligand
binding as well. To palliate this problem, the definition of the reacting
centre is extended to neighbour atoms, either systematically at a pre-
defined bond-distance (diameter, panel C and D Fig. 2) or based on
expert-knowledge.

2.1.3. Systematic rule generation
Reaction rules can be computed in principle by processing the set of
reactions stored in metabolic databases. However there are some

B
S N
. -1 ( 6-10)
(14-19)
(6-19)
L-Aspartate +1 (14-10)

o + o
O
0
Substrate + Oxaloacetate Product +  L-Aspartate
Reaction SMARTS:
(#7:10] - [#6:6] (- [#6:5] - [#6:4] - [#6:2] (- [#8:1])=[0:3]) -
e [#6:7) (- [#8:81)=[0:9]>>[#8:1] - [#6:2] (=[0:31) - [#6:4] -
= (46:5]- (#6:6] (=0) - [#6:7] (- [#8:8])=[0:9] . [#7:10] -
[#6] (- [#6] - [#6] (- [#8])=0) - [#6] (- [#8])=0
[#6:4] - [#6:5] - [(#6:6] (- [#7:10]) - [#6:7] (- [#8:8])=[0:9]

D=4 >>[#6:4]-[#6:5]-[#6:6] (=0) - [#6:7] (- [#8:8])=[0:9].
[#7:10] - [#6] (- [#6] - [#6] (- [#8])=0) - [#6] (- [#8])=0

[#6:6] - [#7:10]>>[#6:6]=0. [#7:10] - [#6] (- [#6] - [#6]
(- [#8])=0) - [#6] (- [#8])=0

Substrate + L-Glutamate

2-Oxoglutarate  + Product
Reaction SMARTS:

[#8:11] - [#6:12] (=[0:16]) - [#6:13] - [#6:14] (=[0:19]) - [#6:15]
(- [#8:18])=[0:17]>>[#8] - [#6] (=0) - [#6] - [#6] - [#6] (=[0:19]) -

D=0 (46) (- #8])=0. [#7] - (#6:14] (- [#6:13] - [#6:12] (- (#8:11]) =
[0:16]) - [#6:15] (- [#8:18])=[0:17]
[#6:12] - [#6:13] - [#6:14]) (=[0:19]) - [#6:15] (- [#8:18])=[0:17]

D=4 >>[#8] - [#6] (=0) - [#6] - [#6] - [#6] (=[0:19]) - [#6] (- [#8])=0.
[#6:12] - [#6:13] - [#6:14] (- [#7]) - [#6:15] (- [#8:18]))=[0:17]

[#6:14]=[0:19]>>[#8] - [#6] (=0) - [#6] - [#6] - [#6] (=[0:19]) -
[#6] (- [#8])=0. [#6:14] - [#7]

Fig. 2. RetroPath2.0 rules and corresponding SMARTS for reaction 2.6.1.1 at various diameters. A. Full reaction 2.6.1.1 with atom mapping. B. The list of broken bonds (—1) and bonds
formed (+1) is given by their atom numbers. C. The corresponding SMARTS for the component modelling promiscuity on L-glutamate: Substrate + Oxaloacetate = Product + 2-
Oxoglutarate. D. The corresponding SMARTS for the component modelling promiscuity on oxaloacetate: Substrate + L-Glutamate = L-Aspartate + Product. C and D. Rules are encoded
as reaction SMARTS and characterized by their diameter (e purple, 4 blue or 0 green), that is the number of bonds around the reaction centre (atoms 6, 10 and 14, 19) defining the atoms
kept in the rule. This allow for a controlled and flexible modelling of enzymatic promiscuity. Note that for the case of 2.6.1.1 the co-product is always the same (C: L-aspartate; D: 2-
oxoglutarate) but that is not always the case, depending on the connectivity of the atoms belonging to the reaction centre. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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difficulties associated with this task. Exhaustive rules generation is
certainly another major challenge for retrosynthesis. We can distinguish
two main philosophies to systematically encode enzymatic reactions.

The first approach consists in encoding a small set of generalist rules
guaranteed by a model to cover all possible classes of reactions.
According to the Enzyme Commission (EC) nomenclature all reactions
that belong to the same third level EC number should follow the same
chemistry, while the fourth and last level is for disambiguation
(International Union of Biochemistry and Molecular Biology
Nomenclature Committee and Webb, E.C, 1992). Both SimPheny and
BNICE use the third EC number level to guide their reaction encoding
effort. SimPheny (Yim et al., 2011) has 50 manually curated reaction
rules, and the number of rules of BNICE systems are of the same order;
86 for (Henry et al., 2010), 198 for (Jeffryes et al., 2015), 722 for
(Hadadi et al., 2016a). This approach is well-suited for manual cura-
tion, since even if the number of reactions to annotate is rather small, it
is supposed to be exhaustive in terms of the involved chemistry.
Nonetheless, relying on EC numbers often requires adding exceptions
since some reactions at the third level of EC numbers do not share any
common substructure and thus cannot be expressed by the same rule.
For instance, the carbon-halide lyases class (EC 4.5.1.*) is composed of
five fourth level reactions which all remove a chlorine atom, but some
reactions also remove a primary amine from a substrate and replace it
either by a double bonded carbon, a hydrogen, an oxygen atom or a
more complex functional group (Supplementary Fig. S1). Their number
of substrates and products also varies. Clearly, these reactions cannot be
encoded using a single BE matrix, a reaction signature, or an intelligible
reaction SMARTS. Another need for exceptions arises from the fact that
many reactions have no EC number assigned by the Commission
(International Union of Biochemistry and Molecular Biology
Nomenclature Committee and Webb, E.C, 1992).

The second approach, which is more data-driven, is to automatically
compute rules for all available metabolic reactions by selecting only the
atoms belonging to a sphere of fixed diameter around the reaction
centre. This is the approach adopted by the workflow proposed in this
paper, RetroPath (Carbonell et al., 2011b, 2014b), and others (Chen
et al., 2013; Rahman et al., 2014; Sivakumar et al., 2016). Ideally, the
diameter used should directly be linked to known promiscuity of an
enzyme's sequence. In our experience, a diameter of 6-8 (see
Supplementary Note 1 for a detailed discussion on diameter selection
and promiscuity) is generally a good trade-off to cover known reactions'
specificity with a reasonable amount of promiscuity predictions (see
Section 4.1.3 for an evaluation of rules performance for promiscuity
classification and (Carbonell et al., 2011a; Faulon et al., 2008)). Using
the procedure outlined in the caption of Fig. 2, when applied to the
MetaNetX database (Moretti et al., 2016) the number of rules returned
is between 6900 and 19,000 depending on the parameters used to
model enzymatic promiscuity (diameter) for the 31,527 reactions
stored in MetaNetX (MNXR identifiers, v.2.0). Interestingly, not only
multiple generated rules can belong to the same EC class, but also a
same rule can correspond to several EC classes. For instance, at dia-
meter 4, three EC numbers (2.6.1.1, 2.6.1.17, 2.6.1.67) from three
distinct reactions (resp. MNXR32641, MNXR32641, MNXR31792) are
associated to the same rule depicted in Fig. 1D (promiscuity on ox-
aloacetate, MNXM42).

2.1.4. Cosubstrates, cofactors and coproducts

Another challenge for retrosynthesis algorithms is the need to
handle reactions processing multiple substrates and/or multiple pro-
ducts. Dealing with multi-substrate reactions requires more computa-
tional resources in order to model enzymatic promiscuity for each
combination of promiscuous substrates (Fig. 2).

For these purposes, cosubstrates and coproducts that are currency
cofactors (such as water, CO,, ATP, NADP, etc.) can be ignored from the
rules under the assumptions that they are available in the cell and that
there is no gain for retrosynthesis analysis in modelling promiscuity on
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them. However, information about cofactors participating in reactions
should not be discarded since they could be used at a later stage to sort
pathways by their efficiency in terms of cofactor exchange and the
burden they impose on central metabolism.

Nonetheless, even if we ignore currency metabolites in the rules,
around a third of metabolic reactions still remains multimoleculars (see
Supplementary Note 2). Our practical solution is to model enzymatic
promiscuity for only one substrate at a time, meaning that for any
multi-substrate reaction “A + B — C + D”, alternatives substrates A’
and B’ are never tested together to limit the combinatorial complexity.
RetroPath2.0 follows this solution as we encode one rule per reference
substrate (for components “A — C + D” and “B — C + D”) as shown in
Fig. 2. Others embrace combinatorial complexity (Fig. 1B and D) or
simply ignore all cosubstrates (Fig. 1C).

2.2. Building (retrosynthesis) reaction network

In all algorithms listed in Table 1, retrosynthesis maps are con-
structed by applying reaction rules in an iterative fashion starting from
a source set of compounds until the molecules in a sink set of com-
pounds are found in the map. In the context of metabolic engineering, if
the rules are applied in a forward manner, the source set is composed of
the native metabolites of the chassis strain and the sink set are the
molecule we wish to produce. If the rules are applied in a reverse
manner then the source set are the molecules to be produced and the
sink set are the metabolites of the chassis. One bottleneck that all al-
gorithms face is computation complexity due to the combinatorial ex-
plosion of the number of reactions predicted from the rules. This is true
regardless of whether the reactions are applied in a forward or reverse
manner. As an example, let us assume we wish to perform retro-
synthesis for some FDA approved drugs in E. coli. In the reaction list we
have at our disposal there is one for reversed hydro-lyases (i.e. reversed
4.2.1). According to (Henry et al., 2010) the rule for that reversed re-
action is R1IC(=0)C(R2)=C(R3)R4 + O-R5 — R1C(=0)C(R2)-C(R3)
(R4)ORS5, where R5 can be C, H, O, and S and all other Rs can be any
atoms. Assuming R1C(=0)C(R2)=C(R3)R4 is the main substrate (our
drug target) and O-R5 the cosubstrate, 68 FDA approved drugs from
DrugBank contain the first substructure. If we restrict the cosubstrate to
be in the E. coli model iJO1366 then 653 metabolites out of 810 com-
pounds in the model contain the second substructure, while 50,810
compounds from MetaNetX will pass the substructure test. Taking Vi-
tamin C as an example of a DrugBank compound that passes the sub-
structure filter, one finds 1883 unique products when applying the re-
versed rule 4.2.1 to Vitamin C and E. coli metabolites and 343,177
products when the cosubstrate is in MetaNetX. There are more products
than substrates because for some substrates the reversed rule 4.2.1
applies to more than one location.

As already mentioned, for a given retrosynthesis target one needs to
apply all rules to the target, all rules to the products obtained by ap-
plication of the reversed reactions to the target, and so on until a pre-
defined stop condition occurs (often the number of iterations). Clearly,
if reaction rules generate more than 1000 products even with 50 rules
the problem starts to be challenging -if not impossible- to manage
computationally after 2 or 3 iteration steps.

Strategies are needed in order to cope with that complexity.
RetroPath proposes a solution where reactions are scored according to
their ability to retrieve enzyme sequences catalysing substrate to pro-
duct transformations. Reactions below a predefined score are removed
from the retrosynthesis map. For any given reaction the sequence scores
are computed by machine learning using a technique that we developed
earlier. The model is trained on all known pair “enzyme sequence” x
“(substrate, product)” using Support Vector Machines (Faulon et al.,
2008) or Gaussian Processes (Mellor et al., 2016). GEM-Path
(Campodonico et al., 2014) proposes another strategy where for each
reaction the substrates are accepted if they are similar enough to the
substrates of the reference reactions.
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Fig. 3. RetroPath2.0 KNIME workflow. A. Main panel view (left) and input configuration window (right) that allow the user to set up parameters. B. Inner view of the "Core" node where
the computation takes place. The "Source, Sink..." and "Rules" nodes parse the source, sink and rules input files provided by the user and sanitize data so that it can be processed by
downstream nodes. The outer loop ("Source" loop) iterates over each source compounds, while the inner loop ("Length" loop) allows to iterate the process up to a maximum number of
steps predefined by the user. The nodes (i) "FIRE", (ii) "PARSE", (iii) "UPDATE SOURCE..." and (iv) "BUILD" are sequentially executed at each inner iteration. Respectively, they (i) apply
all the rules on source compounds, (ii) parse and sanitize new products, (iii) update the lists of source and sink compounds for the next iteration and (iv) merge results that will be written
by the node "Write global results". Once the maximum number of steps is reached (or no new product is found), the "Compute scope" node identify the scope linking each source to the sink
compounds, then these results are written by the node "Write per source results". Only the main nodes involved in the process are shown.

We detail in the next sections a new implementation of RetroPath to
predict reaction networks and perform retrosynthesis among other
applications. RetroPath2.0 addresses the challenges listed above with a
special attention to remaining easy to use and modifiable by end users,
unlike tools developed so far. In that sense, both the encoding of re-
actions into generalized rules and the actual use of those rules to predict
new reactions depend strictly on resources developed by the commu-

nity.

3. Method

The workflow proposed in this section can a priori be used to all
systems presented in Table 1 to construct retrosynthesis maps as long as
reaction rules can be coded by reaction SMARTS. As examples, we
provide such set of rules extracted from the SimPheny, BNICE and
RetroPath systems.

Our computational methods make use of in-house algorithms
(Carbonell et al., 2014a), RDKit routines (Landrum, 2016) and KNIME
nodes (Berthold et al., 2008). They have been implemented in the form
of a KNIME workflow -called RetroPath2.0- (Fig. 3) that we provide in
the Supplementary materials, in addition of sets of rules, examples, and
useful data files. Updates will be published on myExperiment.org
(https://www.myexperiment.org/workflows/4987.html).

3.1. Reaction rules

RetroPath2.0 uses reaction SMARTS to encode reactions. It is a
SMIRK-like reaction rules (Daylight, 2017) format defined by RDKit and
is mostly compatible with other tools (see Fig. 1).
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3.1.1. Collected reaction rules

Rules for SimPheny and BNICE were extracted from Yim et al.
(2011) and Henry et al., (2010) respectively, and manually entered by
using Chemaxon Marvin Sketch software products (15.5.18, 2015,
http://www.chemaxon.com). For each rule atom mapping was calcu-
lated by Marvin Sketch and the resulting rules were stored in SMARTS
format as in Fig. 2.

3.1.2. Generated reaction rules

We used MetaNetX version 2.0 (Moretti et al., 2016) as the reference
database for metabolic reactions that we encoded in rules. MetaNetX is
a meta-database that compiles into a single reference namespace both
reactions and metabolites extracted from main metabolic databases
such as KEGG, Metacyc, Rhea or Reactome. Reactions can contain many
substrates and many products. We performed an Atom-Atom Mapping
(AAM) using the tool developed by (Rahman et al., 2016) on all Me-
taNetX reactions (Fig. 2A). We filtered out transports reactions and
those involving compounds with incomplete structures (class of com-
pounds, R-groups, etc.). Stereochemistry was removed.

Multiple substrates reactions were decomposed into components
(panel C and D in Fig. 2). There are as many components as there are
substrates and each component gives the transformation between one
substrate and the products. Each product must contain at least one atom
from the substrate according to the AAM. This strategy enforces that
only one substrate can differ at a time from the substrates of the re-
ference reaction when applying the rule (see Section 2.1.1 enzymatic
promiscuity modelling).

Next step consisted in computing reactions rules as reaction
SMARTS for each component. We did it for diameters 2 to 16 around
the reaction centre (panels C and D in Fig. 2) by removing from the
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reaction components all atoms that were not in the spheres around the
reaction centre atoms.

We extracted more than 24,000 reaction components from
MetaNetX reactions, each one of those leading to a rule at each dia-
meter (from 2 to 16).

We provide in Supplementary a subset of 14,300 rules for E. coli
metabolism, both in direct and reversed direction. The rules were se-
lected based on the MetaNetX binding to external databases and the
iJO1366 whole-cell E. coli metabolic model (Orth et al., 2011).

3.2. Building (retrosynthesis) reaction networks between two pools of
compounds using the RetroPath2.0 workflow

The RetroPath2.0 workflow essentially follows an algorithm pro-
posed by some of us (Carbonell et al., 2011b). After removing all source
compounds already in the sink set, the workflow applies the rules to
each of the compounds of the source set. For each compound, the
products are computed using the RDKit KNIME nodes (Landrum, 2016).
Products are standardised and duplicates are merged. All pairs sub-
strate-product are added to the growing network along with the reac-
tion rules linking them.

In the next iteration, the set of products becomes the new source set.
However, before iterating, the workflow removes from the new source
set all compounds that belong to the sink (as these are already solutions
and there is no need to iterate) and the workflow adds the product set to
the sink in order to avoid applying reactions on the same products
during subsequent iterations. Consequently, the workflow computes
only the minimal routes between source and sink, i.e. routes in which
all reactions are essential for their viability, and thus minimizes the
number of enzymes to be added to a chassis strain when implementing
the pathways. This feature can be ignored by not specifying a sink for
the first iteration.

The RetroPath2.0 workflow iterates until a predefined number of
iterations is reached or until the source set is empty. The final produced
graph is composed of the list of links between substrates and products
annotated with their corresponding reaction rule. Products belonging to
the sink are annotated as such.

Note that the iterative process can reveal itself to be quite compu-
tationally demanding. To tackle this issue, RetroPath2.0 has a feature to
bias the reaction space exploration toward compounds generated by
trusted rules, using a rule-wise penalty score. If too many compounds
are generated and need to be handled at once, only a predefined
number of compounds with the lowest penalties according to their
generating rules are kept in the new-source of the following iteration.
Of course, both the definition of the penalty and maximum number of
compounds to keep are critical and fall within the responsibility of the
user. As described next, the rules we provide are scored to optimize in
vivo pathway feasibility by penalizing rules associated to enzymatic
reactions with inconsistent sequence annotation.

3.3. Score rules by enzyme sequence consistency

Predicted reactions in the final graph generated by the RetroPath2.0
retrosynthesis workflow need to be associated with enzyme sequences
in the final engineering of the pathways. The selection of such se-
quences should look for a trade-off between the specificity of the re-
action rule and the information available in enzyme databases for the
reaction through the EC classification. Whereas the EC classification has
traditionally provided a hierarchical numerical classification of en-
zyme-catalysed reactions to progressively describe reactions in finer
detail, RetroPath2.0 introduces a similar hierarchical classification that
is controlled by the diameter used in rule generation. In some cases the
diameter of the reaction rule found by the RetroPath2.0 workflow
might be high, i.e. highly specific to that reaction. However, it often
occurs that there is no annotated enzyme sequence for the rule. In order
to find some candidate sequences, we look into reactions that are close
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according to the EC hierarchy for each EC class containing at least one
instance of the rule at given diameter. Traversing both rules diameter
hierarchy and the underlying EC classes allows the selection of plau-
sible sequence candidates for each reaction rule.

We compiled the set of Uniprot sequence identifiers annotated for
reactions by looking at the cross-link annotations in MetaNetX for Rhea
and MetaCyc databases. In total 208,980 sequences from 5388 organ-
isms were associated to 7793 reactions. At a given diameter of the rule,
we iteratively assigned sequences to rules. First, reactions with anno-
tated sequences were collected for each generated rule. Since a rule can
represent one or more reactions at a given diameter, sequences coming
from different reactions sharing the same rule were aggregated into a
single set for that rule. These direct annotations only provided a partial
coverage for the total rules in the database. For instance, at diameter d
= 8, there were 7898 orphan rules, i.e. rules that were generated from
reactions lacking sequence annotation (Supplementary Table 1). Simi-
larly, there were 6280 orphan reactions at diameter d = 8. In order to
increase the coverage, we considered the EC class of the reaction when
such information was available. Sequences associated with reactions
sharing strictly the same EC class were combined together. Adding to-
gether such annotations for the same EC class fixed issues related to
partial annotations for the less common reactions. In that way, the
number of orphan rules was significantly reduced to 1719, which is
approximately a 13% of the total rules. Similar ratios were observed for
reactions.

For the orphan rules having no sequence annotation after con-
sidering the EC class of the reactions, we followed the strategy of re-
ducing the specificity of the EC class by reducing the number of digits.
In other words, if a rule had no annotation based on the EC class at 4
digits, we looked at reactions that shared same EC class at 3 digits with
one reaction associated with the rule and so on until we found sequence
annotations. Notably, a sharp decrease on the number of orphan rules
already occurred at the level of three digits of the EC class. The re-
maining orphan rules, less than 1%, was eventually annotated once we
reduced the specificity from 3 digits down to 1 digit in the EC class.

We should emphasize that in the procedure described below, se-
quence annotations that merged multiple EC classes sharing same initial
digits were only used for those cases where no sequence information
was available at higher EC class levels. This annotation from higher to
lower specificity in the set of sequences associated with the rules de-
pending on known sequences allowed us to score the rules. A rule that
has associated sequences with low diversity should in general corre-
spond to cases where the sequence information is highly specific to that
rule. As the diversity of sequences increases the specificity of those
sequences to their associated rules becomes lower. We evaluated such
degree of specificity by considering the degree of clustering of the se-
quences associated with the rules. Clustering of the sequences was
performed by using Cd-hit (Li and Godzik, 2006). According with this
algorithm, our database of 208,980 amino-acid sequences was clustered
into 22,221 clusters for a similarity threshold of 0.5. We used a penalty
score for the rules based on the number of sequence clusters n,,; con-
tained in the sequences selected for a given rule:

score (rule) = log,,(Nyuie)

@

where the logarithm is applied for regularization. A penalty score of 0
implies high specificity, as this means that all sequences belong to a
single cluster, while high penalty scores imply multiple clusters and
therefore low specificity in the sequence annotation.

3.4. Enumerating pathways between two pools of compounds

The lists of pathways linking (i) a pool of source compounds to (ii) a
pool of sink compounds are computed running an algorithm we de-
veloped earlier (Carbonell et al., 2014a). This algorithm consists of the
following steps for a given source compound. (1) Compute the scope, a
subset of predicted reactions between the sink compounds and the set of
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source compounds. The scope represents the set of compounds and
reactions that are involved in at least one pathway. It is computed in a
two steps search. First the forward step starting from source compounds
finds all reachable compounds that are producible through reactions.
Secondly the backward step starting from the sink compound adds to
the scope all reactions that can be involved in at least one producible-
pathway. (2) Build the stoichiometric matrix. The stoichiometric matrix
describes the directed subnetwork involving the set of compounds and
reactions identified at the scope step, starting from the source com-
pounds. (3) Enumerate elementary flux modes. An elementary mode
corresponds to a minimal unique set of reactions that (i) verified the
stoichiometric constraints of the network and (ii) is able to carry non
zero-fluxes at the system's steady-state (Schuster et al., 2000). In order
to efficiently compute elementary modes, stoichiometric matrix di-
mension is generally reduced through lossless compression. Only en-
umerated flux modes linking source compounds to the sink compound
are kept in order to form the final list of pathways. These three steps are
performed iteratively for each source compound.

RetroPath2.0 computes the scope for each queried compound. It can
be visualized and explored to retrieve the pathways thanks to
ScopeViewer, a humble web-application that we provide in
Supplementary. Note that the provided workflow does not explicitly
extract the pathways and does not rank them. Yet, we provide at
https://github.com/brsynth/rp2paths a separate utility program
“RP2paths” allowing one to enumerate pathways from the results
generated by RetroPath2.0.

4. Results

We validated our set of rules with RetroPath2.0 by checking that
they were able to reproduce the known metabolic space, and that they
could be used to perform reaction classification. The capability of
RetroPath2.0 to perform retrosynthesis was confronted to in vivo ex-
periments by counting the number of bioproduction pathways found for
targets extracted from a database of metabolic engineering successes.
We also emphasized the versatile usage of RetroPath2.0 by an original
application to design biosensors (Supplementary Note 3).

4.1. Rules validation

The quality of the output of the workflow depends largely on
feeding it with the proper set of reaction rules. Some authors (Henry
et al.,, 2010; Yim et al., 2011) have published sets of rules that already
constitute an initial test bed. We collected those in addition of a set of
SMARTS rules that we compiled for all reactions of the last E. coli
whole-cell model (Orth et al., 2011) based on MetaNetX cross-refer-
ences. Those rules are available in Supplementary. All rules were
checked to ensure they could be used with the workflow and yield at
least one product.

4.1.1. Coverage of known metabolic space

In order to check the potency of the rules, i.e. that they could indeed
be used to predict reactions, we tried to retrieve all reference reactions
of MetaNetX from the rules. We compared three dataset of mono-
substrate rules according to their origin: SimPheny (Yim et al., 2011),
BNICE (Henry et al., 2010) and RetroPath2.0. To make a fair compar-
ison we selected from all MetaNetX reactions a subset of 13,000 reac-
tions having an associated EC number and a structure for all its com-
pounds (SimPheny and BNICE rules are based on EC numbers). We
extracted from those 6000 substrates and 7000 products (MetaNetX
identifiers) excluding cofactors. For each rule dataset, all rules were
applied on the set of substrates using the workflow with default para-
meters. We counted the number of products that could be regenerated
and the number of generated compounds that were referenced in Me-
taNetX.

Remarkably given the number of rules considered, 34% of
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MetaNetX products were recovered by SimPheny rules (50), and 41%
by BNICE rules (86). They respectively generated 75,400 and 59,000
compounds, among which 5% and 7% could be found in MetaNetX and
are thus connected to a biological database. Since RetroPath2.0 rules
were generated from MetaNetX data we expected a better coverage over
the products. This was indeed the case with 96% recovered products
from MetaNetX's reactions. The few missed products originated from
reactions that could not be encoded in rules due to atom-atom mapping
issues. Additionally, 63% of the 17,500 compounds generated by
RetroPath2.0 are new to MetaNetX, which highlights the capability of
our rule dataset to generate a reasonable amount of new compounds.

The fact that RetroPath2.0 rules generates less compounds than the
other tested sets of rules is explained by the differences in term of
diameter used. RetroPath2.0 uses a flexible diameter, which by default
ranges from 16 to 2, decreasing if no rule can be used on a substrate at
higher diameters. This has for effect to prioritize more conservative
results (higher diameter) while ensuring that broader promiscuity are
tested as a last resort (lower diameter). Overall, product coverage
shows us that RetroPath2.0 rules are able to reproduce most of
MetaNetX products, hence most of what is known of the metabolic
space.

4.1.2. RetroPath2.0 rules for reaction classification

We evaluated the ability of our rules to perform automated reaction
classification. To that end, reactions in the database that contained EC
class annotations were grouped into their corresponding EC class at the
third level. We then computed the similarity between reactions based
on the signature content of their rules. For a given diameter d, each rule
was decomposed into its elementary signatures (Carbonell et al., 2014a)
and similarity between two given reactions R; and R, was computed by
means of the Jaccard similarity coefficient T¢(R,, R,) applied to the two
reaction rules:

lo¢R) n o(Ry)

] _ ot ®) n odR)|
TR, R) = lc¢(R) U oi(R)

2
The previous expression ranges between 0 (minimum similarity)
and 1 (maximum similarity) and has been often applied to compute
similarity between compounds or even reaction that are described by
binary fingerprints (EC-BLAST (Moriya et al., 2010; Campodonico et al.,
2014; Rahman et al., 2014). The advantage and main difference of
using rules with a selectable diameter is that we can compute the
Jaccard similarity coefficient in function of the diameter d. That gen-
erates a sequence of monotonically decreasing similarities starting from
0 up to the maximum diameter of the reactants. Similarity of two re-
actions at diameter 0 contains the basic information about common
patterns of bonds that were broken or formed in the two reactions. As
we extend similarity to higher diameters, information becomes more
specific to the substrates and products involved in each reaction.

In order to capture efficiently this feature of diameter dependence
for Jaccard similarities between rules, we defined a global similarity
parameter between reactions S(R;, R») extended to a diameter range [0,
d] as an exponentially increasing weighted sum of the Jaccard simi-
larity coefficients:

TRy, R)KS

SRy, Ry) = ntl g
k=1

(€)]

where a is a regularization parameter.

For each reaction in the database, we computed its corresponding
rule and similarities based on a diameter range from O to 8. In total,
rules were computed for 13,782 reactions contained in the database.
We used a = 2 as regularization parameter.

We then tested the discriminant ability of using such reaction global
similarity measure for reaction classification. Our tests were performed
using the R package ROCR. We created a positive and negative set for
each EC class. The positive set was formed by the set of reactions
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annotated for this EC class. A balanced training set was then built by
randomly selecting from the negative set. For each EC class containing
at least 10 data points, as well as for the total set of balanced training
set we computed the area under the ROC curve (AUC), resulting in an
overall AUC of 0.884 for diameter d = 8 (Supplementary Fig. S4). Such
performance values are slightly higher than the ones obtained by EC-
BLAST (Rahman et al., 2014) by using fingerprint-based similarities,
showing the ability of the rules as reaction classifiers.

4.1.3. Score vs. specificity

The ability of substrate generalization of SMARTS rules can poten-
tially be used to assess enzyme specificity. Enzyme specificity is an
important factor that needs to be considered for metabolic pathway
engineering. Moreover, several studies have shown that enzymes that
can catalyse multiple reactions or can process multiple substrates have
more evolvability capabilities than specific enzymes (Khersonsky and
Tawfik, 2010; Nam et al., 2012; Orth and Palsson, 2012; Guzmén et al.,
2015). Such property can be approached through our rules as they
provide a means for representing chemical transformations for gen-
eralized substrates. The level of generalization of reactions and ulti-
mately of their associated enzyme sequences could be therefore quan-
tified using our rules. As described in Methods, one can define a
specificity score by assessing the level of generalization of both the
reactions and sequences having such reactions at a given rule diameter.
The algorithm traverses both the reaction and sequence space in order
to score reaction specificity and more specific rules get lower scores.

To evaluate the ability of the score to represent enzyme specificity,
we have analysed a reference set of enzymes in E. coli that have been
classified as either specific or generalist, i.e. if they can catalyse one or
multiple reactions (Nam et al., 2012). For each gene, we took their
associated reactions in the EcoCyc database (Keseler et al., 2013). Each
reaction was mapped into their associated rule at several diameters d.
The resulting scores for each gene were then aggregated. We mapped in
total 787 E. coli genes, with 602 specific vs. 185 generalist enzymes,
respectively.

Notably, the scores computed in that way, as shown in
Supplementary Fig. S5, displayed the ability to differentiate between
these two groups of enzymes, (t = — 6.5144, p-value of 2.3e—10 for a
Welch's two sample t-test), with specific enzymes receiving lower
ranking. We should note that the classification between specific vs. non-
specific enzymes depends on the actual knowledge and degree of detail
in the description of the reactions in the reference organism and
therefore the list of generalist enzymes should be updated as long as
new activities are discovered (Guzman et al., 2015). For instance, we
observed a clear outlier in the set of specific enzymes that received a
high score based on rules and therefore we should expect wider spe-
cificity. This was the case of gene phoA, b0383, alkaline phosphatase EC
3.1.3.1. It turned out that this enzyme has been reported to have wide
specificity (Yang and Metcalf, 2004) in agreement with the high score.

4.2. Workflow validation and applications

We tested the reaction network prediction features of RetroPath2.0
workflow with two applications. The typical prediction of bioproduc-
tion pathways (see below), and the prediction of small biosensing me-
tabolic circuits for biomarkers (see Supplementary Note 3).

4.2.1. Coverage of bioproduction pathways

The Learning Assisted Strain EngineeRing (LASER) database is a
repository for metabolic engineering strain designs (Winkler et al.,
2015). It stores more than 600 successful metabolic engineering designs
(Winkler et al., 2016) that have been manually curated from the lit-
erature. Those examples are particularly appealing for testing retro-
synthesis features since they include an ideal dataset of authentic po-
sitive examples of bioproduction pathways, sometimes involving
heterologous enzymes. We extracted all compounds targeted for
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production described in the LASER database (release f6ce080a8993)
and used them to assess the ability of RetroPath2.0 to find retro-
synthesis pathways for real-life applications when used with all the
rules from MetaNetX.

The structures of the target compounds were inferred from their
name by querying PubChem and ChemSpider. 160 compounds targeted
for bioproduction were extracted from LASER. To complete further this
dataset, we extracted 68 compounds (MBE dataset) published in
Metabolic Engineering in 2016 (volumes 33-38), a period not covered
by LASER. These two datasets contained 203 distinct compounds in
total once merged together based on their structure (standard InChI).
Furthermore, we removed E. coli endogenous compounds that were
used as our “sink”. Finally, 146 distinct compounds were collected to
serve as “source” compounds.

Compounds from E. coli were extracted from iJO1366 whole-cell
model (Orth et al., 2011) and MetaNetX cross-references. We ignored
compounds that belong to so-called “blocked pathways” which are by
definition impossible to produce or consume at steady-state in a me-
tabolic model. Such compounds do not constitute a proper source (or
sink) for retrosynthesis applications because reactions explaining
compound availability in the chassis could be missing. We performed a
flux variability analysis to identify them. Overall, we collected 962
MetaNetX identifiers of compounds belonging to E. coli that we provide
in Supplementary along with their structure (InChI).

All results were generated with a maximum of five retrosynthesis
iterations and a timeout of three hours per target on a recent desktop
computer. This puts us in realistic operational conditions for users that
might have access to modest computational resources. Given those
constraints, we successfully found at least one pathway for 81% of the
targets (119/146), i.e. a set of reactions allowing the production of the
target compound exclusively from E. coli endogenous metabolites.
Interestingly, we found more than one pathway in most of the cases
(104/119).

One of such compounds for which several pathways was found is
styrene. Styrene is a building block used in the fabrication of plastics
(Isikgor and Becer, 2015). LASER references one pathway for the bio-
production of styrene from phenylalanine with heterologous enzymes
in E. coli (McKenna and Nielsen, 2011; McKenna et al., 2015) and in
S.cerevisiae (McKenna et al., 2014). RetroPath2.0 found this pathway
(Fig. 4, in red) along with five alternative one from E. coli endogenous
compounds: 3-phenylpropionic acid, phenylacetaldehyde, and phe-
nylpyruvic acid (Fig. 4, resp. F, G, and H).

Another non-natural example for which several pathways were
found is terephthalic acid (TPA). TPA is a non-natural commodity
chemical widely-used for its ability to form synthetic fibres, and ulti-
mately in the fabrication of polyesters such as PET. TPA is traditionally
produced from p-xylene by synthetic chemistry processes (Sheehan,
2000). The p-xylene can eventually come from lignocellulosic biomass,
making the TPA a bio-based compound in such cases (Isikgor and Becer,
2015). Interestingly, two enzymatic bioproduction pathways have been
reported for TPA, and they follow the same chemical transformations as
the ones from synthetic chemistry (Sheehan, 2000); one from p-xylene
(Bramucci et al., 2001) in Burkholderia genus, and another from p-toluic
acid in Comamonas testosterone (Wang et al., 2006). RetroPath2.0 re-
trieved those routes and proposed alternative shorter paths from en-
dogenous E. coli compounds such as phenylalanine, phenylpyruvic acid,
and 3-phenylpropionic acid (Fig. 5, resp. K, P, and M). To the best of
our knowledge, those pathways have never been implemented in vivo.

Those results highlight the interest of RetroPath2.0 for retro-
synthesis applications. As an additional example, see also the pathways
predicted toward ethylene glycol in Supplementary Fig. S3. Retro-
Path2.0 is able to reproduce validated pathways and to propose new
ones, both for natural and non-natural compounds. All results are
provided in Supplementary.
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Fig. 4. Enumerated pathways for the production of styrene. Each pathway is depicted by
a distinct colour. Pathway referenced in McKenna and Nielsen (2011) is in red (D-B-A).
Compounds are represented by their structures, and reactions by their EC numbers.
Styrene and sink compounds are surrounded by a solid line, intermediates by a dashed
line. A: styrene; B: phenylacrylic acid; C: styrene oxide; D: phenylalanine; E: 3-phe-
nyllactic acid; F: 3-phenylpropionic acid; G: phenylacetaldehyde; H: phenylpyruvic acid.
Cofactors have been removed for clarity; the whole scope is available in Supplementary.
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5. Discussion

The RetroPath2.0 workflow is a versatile reaction network tool,
built to be modular enough to answer most metabolic engineering
needs. RetroPath2.0 takes as input a first set of compounds (the source),
a second set of compounds (the sink) and a set of reaction rules (see
Fig. 3). The workflow produces a network linking the source set to the
sink set, where each link in the network correspond to a reaction rule.
The RetroPath2.0 workflow runs under the KNIME analytics platform
and is available in Supplementary material and at myExperiment.org

The choice of source, sink and rule sets depends on the application.
For instance, if one wishes to find all possible synthesis routes that can
be engineered for a target compound, then the source set will be the
target, the sink will be the set of metabolites of the chassis strain, and
the rules will be the reversed form of all known metabolic reactions (cf.
4.2.1). If one is interested in finding pathways to be engineered to
degrade a given xenobiotic, the source set will be the xenobiotic, the
sink set can be composed of those metabolites in the central metabolism
of a chassis strain and the rule set could comprise all known catabolic
reactions. In the same vein, one can find sensing-enabling pathways
with the set of known detectable compounds as sink, the set of target
compounds to detect as source, and by using the forward rules (see
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Supplementary Note 3 for the detection of biomarkers). Finally if one
wishes to know all possible compounds that can be produced with a
chassis strain when adding heterologous enzymes, the source set is
composed of the metabolites of the chassis strain, the sink set can be
either empty or a set of compounds in a vendor catalogue, and the rule
set should cover all reactions that could occur in the chassis strain,
including heterologous enzymatic ones. Moreover, any other applica-
tions where the problem can be framed into source, sink and rule sets
can be processed by the workflow including problems where com-
pounds are not metabolites and reactions are not metabolic reactions.

The most critical feature of a reaction network prediction system is
certainly how the reactions are encoded and from where this knowl-
edge was extracted. In our case, we choose to adopt a reaction encoding
based on SMARTS, a widely accepted compound query language
(Daylight, 2017) that was already used successfully in such context
(Hadadi and Hatzimanikatis, 2015). Unlike most rule-based reaction
prediction systems, RetroPath2.0 rules are not built around the Enzyme
Commission nomenclature, but rather from an automatic translation of
enzymatic reactions extracted from databases, which we believe offers a
refined view of enzyme's capabilities.

We showed that our rules were able to classify reactions and that
our set of rules extracted from MetaNetX had a good coverage over the
known reactome. A good part of the reactions that were not covered
were actually reactions involving compound classes (e.g. “an alcohol”),
which were removed during the rule generation steps. This type of
generalized reactions were, in turn, represented in our set through our
unique way of encoding reactions as generalized rules. One substantial
improvement could probably be met by constraining the atom-atom
mapping and reaction centre identification steps based on the ex-
ploitation of additional knowledge on the reaction and the associated
enzyme. For instance by using the known alternative substrates asso-
ciated to a single enzyme sequence or the EC number assignation.

Evaluating the coverage of a reaction database is interesting in
order to assert the coverage of the known reactome by a given set of
rules, but it cannot be used to assert the efficiency of a retrosynthesis
tool. Indeed, the coverage of a reaction database depends mainly on the
database from which the rules were inferred and how exhaustive the
cross-links are between those two. Ideally, we would desire a set of
rules being able to recover all known biochemical reactions. It means
that anything less than 100% coverage evidences that the set of rules is
incomplete and that more data could have been aggregated. Note that
in this work we focused our efforts on MetaNetX for the sake of sim-
plicity but it is clear that more data can be imported from other data-
bases such as BRENDA (Chang et al., 2015).

To the author's opinion, a better indicator of retrosynthesis tools
efficiency should be found in the coverage of known pathways realized
in a metabolic engineering context. This is precisely what we did using
the LASER database as a reference for examples of successfully en-
gineered metabolic pathways. In that way we provided a comprehen-
sive overview of the capabilities of our tool in order to identify meta-
bolic engineering solutions to bioproduction for well-studied cases. The
main source of misprediction that we observed in our analysis came
from cases in which additional compounds absent from E. coli meta-
bolism were needed to perform the synthesis. Indeed, we performed all
computations within five iterations from E. coli, with target compounds
that were not necessarily produced in this chassis nor at five enzymatic
steps; moreover, some substrates could be supplemented in the media of
the chassis organism. For instance, the synthesis of morphine is de-
scribed for Saccharomyces cerevisiae in Thodey et al. (2014) by two
pathways at three and four steps from thebaine. Thebaine is not natu-
rally present in E. coli metabolism thus absent from the sink we used.
Consequently, this example has no scope at five steps and was counted
as mispredicted. Once thebaine is supplemented in the sink, Retro-
Path2.0 can generate a scope with both pathways. Note that thebaine
was already predicted before being added to the sink, and that doing so
only allowed RetroPath2.0 to use this compound as a valid starting
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Fig. 5. Enumerated pathways for the production of the non-nat-
ural compound terephthalic acid (TPA, compound A) from E. coli.
Each pathway is depicted by a distinct colour. Pathway refer-
enced in Bramucci et al., (2001) is in teal blue (T-S-Q-O-H-C-A).
Compounds are represented by their structures, reactions by their
EC numbers. TPA and sink compounds are surrounded by a solid
line, intermediates by a dashed line. Reactions with unknown EC
number according to MetaNetX are referenced by their MetaNetX
ID. A: terephthalic acid; B: benzoic acid; C: 4-formylbenzoic acid;
D: benzaldehyde; E: benzoyl-CoA; F: phenylacrylic acid; G: ter-
ephthaldehyde; H: p-hydroxymethyl benzoic acid; I: 3-phe-
nylserine; J: 2-succinylbenzoyl-CoA; K: phenylalanin; L: 3-phe-
nyllactic acid; M: 3-phenylpropionic acid; N: 4-(hydroxymethyl)
benzaldehyde; O: p-toluic acid; P: phenylpyruvic acid; Q: p-to-
lualdehyde; R: 1,4-benzenedimethanol; S: 4-methylbenzyl al-
cohol; T: p-xylene. Cofactors have been removed for clarity; the
whole scope is available in Supplementary. (For interpretation of
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the references to color in this figure legend, the reader is referred
to the web version of this article.)

//

4 1 226 MNXR81819) 431 25 )

=

1

A
\ Y

point for synthesis instead of continuing further the retrosynthesis.
Importantly, not all predicted pathways can be readily implemented
in E. coli. Indeed, translation of in silico models into in vivo experiments
require much more constraints to be satisfied, some of those being
hardly predictable. To name but a few, enzyme sequence availability,
chassis ability to fold the enzymes, kinetics, intermediate compounds
toxicity, and overall pathway induced stress on the cell should all be
checked before going any further. In this context, RetroPath2.0 can be
seen as a base on which everyone is invited to build new features in
order to further improve its metabolic space exploration abilities.
Exploiting chemical diversity in order to gain access to the large
catalogue of natural and non-natural chemical resources is arguably one
of the most important goals for biotechnology applications. By ex-
tending metabolic capabilities of enzymes, applications in metabolic
engineering, biosensors and synthetic circuits can be greatly enlarged
and diversified. To that end, RetroPath2.0 brings to the community a
flexible and scalable open source platform with unique metabolic de-
sign capabilities. For the first time, we allow the systematic application
of a full set of validated and standardized reaction rules that can be
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expressed with a selectable level of specificity. Such representation,
which parallels the versatility of enzyme promiscuity, allows an in-
depth exploration of latent abilities of natural enzymes.

The excellent coverage of the workflow along with its proved ability
for recovering both known pathways and putative alternative candidate
pathways show its power as an engineering tool. For that reason, we
have no doubt that the tool will be received as a valuable addition to
the toolbox for engineering biology. Moreover, community contribu-
tions to the workflow will likely expand further the features of the tool,
even beyond metabolic design. In summary, we believe that the ability
of RetroPath2.0 to rationalize and standardize design steps of biological
engineering that have been traditionally performed manually by trial
and error, constitutes a major contribution towards the development of
automated workflows across the whole design, build, test and learn
cycle.
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SUPPLEMENTARY NOTES

SUPPLEMENTARY NOTE 1: REACTION RULE DIAMETER AND PROMISCUITY RECOVERY

Reaction diameter is a parameter related to enzyme promiscuity. In this note, we investigate the
ability of the reaction rules to recover promiscuity in function of the diameter. We have performed
several tests on the reference list of promiscuous enzymes in E. coli (Nam et al., 2012) (see Section

4.1.3 of the manuscript).

Test 1. Does using a reaction diameter recover all the known examples of promiscuity for any

enzymes?

We looked at the coverage of the rule for the total number of annotated reactions in the
promiscuous enzymes. As shown in the Figure S6 (red line), at low diameter, the coverage is quite
high (above 90%), i.e. most of the promiscuous reactions annotated for one gene are recovered by

the rule. As the diameter increases the coverage decreases to 85%.
Test 2. What reaction diameter is best?

In order to answer this question, we should consider the specificity of the rules, i.e. how specific is a
rule to the enzyme? Figure S6 shows the percentage of rules that appear annotated for a single
enzyme depending on the diameter. Rules at low diameter are sometimes shared by more than one
promiscuous enzyme (around 20% of the cases), whereas rules become more specific for one single
enzyme at higher diameters (d > 6). Taking into account this result and the previous one about
reaction recovery, we think that a good trade-off between coverage and specificity is for diameters

between 6 and 8.
Test 3. If the reaction diameter is too small (too general) are false positives predicted?

Enumeration of reaction rules can generate a large list of pairs of substrate-products, especially at
low diameters. Depending on each enzyme sequence and on the experimental conditions, the
expressed enzyme might display more or less affinity toward the substrates and more or less level of
efficiency for some of the reactions. Therefore some predicted reactions might be false positives
depending on the selected enzyme sequence. For instance, phenylalanine ammonia-lyases (PAL)
EC 4.3.1.24 often also show tyrosine ammonia-lyase (TAL) EC 4.3.1.23 activity. Both of them can

be encoded through the same reaction rule at low diameters. Whether the selected enzyme will



show PAL, TAL or both activities will depend on the chosen enzyme sequence. This is a problem

that needs to be addressed through enzyme design rather than retrosynthesis.

Concerning general trends, our previous answer showed that at low diameters there are some rules
that are shared by more than one enzyme. More precisely, at diameter d = 4, 62% of enzymes had
reaction rules with no false positives, 74% of enzymes had at most one false positive (a reaction in
the dataset predicted by the rule that is not annotated for the enzyme). At diameter d = 8, these
percentages were of 78% and 88%, respectively. These results suggest again that a good choice for

recovering promiscuity is a diameter around d =8.



SUPPLEMENTARY NOTE 2: DETAILS ABOUT MULTIMOLECULAR RULES

There are still many metabolic reactions that are multimolecular, even after removing currency
cofactors. MetaNetX version 2.0 (110,000 compounds after canonicalization and 31,527 reactions)
comprise 42% of reactions that remains multimolecular after removing currency cofactors.
Metabolic databases such as MetaCyc or KEGG do identify main substrates and products, albeit not
in all cases, and 29% of reactions in MetaCyc have multiple main substrates and 27% have multiple
main product and 15% have both. A good example of such reactions are transaminases (EC class
2.6.1). There are 178 reactions in that class in MetaCyc, most of them involving two substrates and
two products. Cofactors in 2.6.1 reactions are glutamate and oxoglutarate in 51% of the cases, but
other cofactors are found such as oxaloacetate, 2-oxobutanoate, oxoglutaramate, oxooctonal,
glyoxylate, pyruvate, glutamine, oxosuccinamate, or butamine. Clearly reactions of class 2.6.1
admit multiple substrates and products and they all vary from one reaction to another, thus these
reactions cannot all be coded as monomolecular transformations (R1C(=O)R2 — R1C(NH2)R2) in
the way that is done in (Yim et al.,, 2011) nor they can be coded in the form Glutamate +
R1C(=0O)R2 — Oxoglutarate + RIC(NH2)R2, (where R1 and R2 can be C or H) as done in (Henry
et al., 2010).

Another issue that retrosynthesis algorithms need to overcome is to handle multiple products when
the reactions are reversed (as they should be in any retrosynthesis process). Indeed when a reaction
proceeds forward one assumes that the substrates are readily available and this is generally the case
when moving down through a metabolic pathway, where the substrates of any given reactions are
the products of upstream reactions. In retrosynthesis, the products become the substrates of the
reversed reaction, and these substrates are not necessarily known. To illustrate this issue let us
consider the reversed reaction T + P => S, where T is our retrosynthesis target. T is known but not P,
in principle we should apply the rule to any compound P of the chemical universe (since P is not
necessarily a known metabolite). This solution is of course not practical. To palliate this issue,
RetroPath do not reverse multiproduct reactions but construct an extended metabolic space using
reaction rules applied on the metabolites chassis strains. The other retrosynthesis algorithms do not
explicitly address this issue, albeit mono product reactions can certainly be reversed, and in

principle, all SimPheny rules can be used for retrosynthesis purposes.



As summarized in Table 1, SimPheny (Yim et al., 2011) does not deal with multiple substrates and
products as all rules are monomolecular, BNICE in (Henry et al., 2010) handles partially the
problem, as 70 out of 86 reactions are multimolecular but only 4 reactions have multiple substrates
different than cofactors (compared to 35% in MetaNetX). GEM-Path and RetroPath work with rules
handing multiple substrates and multiple products, thus reflecting better the complexity of
metabolic reactions. Nonetheless, RetroPath2.0 allows only one substrate at a time to undergo

promiscuity modelling so that reaction prediction remains tractable.



SUPPLEMENTARY NOTE 3: DETECTION OF BIOMARKERS THROUGH METABOLIC CIRCUITS

Asides from metabolic engineering, reaction network prediction algorithms can also be used to
develop whole-cell biosensors. Typical synthetic biosensors (Khalil and Collins, 2010) currently
being developed comprise systems capable of sensing a small molecule generally though allosteric
interactions with RNA aptamers (e.g. riboswitches) or transcription factors (van der Meer and
Belkin, 2010) that upon sensing will express a reporter gene. In the context of medical diagnostics
based on biomarkers detection the main advantages of synthetic cell-based technologies over abiotic
detection based on purified antibodies, nucleic acid hybridization, or metabolomics analysis are
lower cost, improved stability, and the possibility to be ultimately used as a personal home

healthcare device.

However, as of today, typical whole-cell biosensors are triggered by no more than half a dozen
input signals. To palliate this shortcomings, we have recently proposed a method to expand the
range of biologically detectable biomarkers by systematically engineering sensing enabling
metabolic pathways (SEMP) (Libis et al., 2016; Delépine et al., 2016), i.e., metabolic pathways that
transform non-detectable chemicals into molecules for which sensors already exist. The SEMP
method has been successfully benchmarked to engineer biosensors that detect pollutants, drugs and

biomarkers such as benzoic acid and hippuric acid (Libis et al., 2016).

Here we investigate the use of RetroPath2.0 to search for all prostate cancer biomarkers that could

potentially be detected using E. coli as a sensing device.

Prostate cancer biomarkers were retrieved from the Human Metabolome Database (HMDB) and
scanned literature to select biomarkers in various physiological fluids: serum (Sreekumar et al.,
2009; Zang et al., 2014; Li et al., 2016; Lima et al., 2016), urine (Sreekumar et al., 2009; Zhang et
al., 2013; Struck-Lewicka et al., 2015; Ferndndez-Peralbo et al., 2016; Lima et al., 2016), and tissue
(Sreekumar et al., 2009; McDunn et al., 2013; Lima et al., 2016; Huan et al., 2016). The above
references gave a final list of about 800 small molecule biomarkers. Because we are considering
engineered in E. coli we removed all E. coli native metabolites, we also removed duplicates and
biomarkers that could not be found in HMDB because of ambiguous names. The resulting sanitized

set was composed of 421 biomarkers (provided in supplementary materials).



RetroPath2.0 was run taking as source all (non-E. coli) prostate cancer biomarkers, and as sink a list
of 500 effector molecules known to either activate or inhibit transcription factors (extracted from
(Delépine et al., 2016)). SEMPs were generated by enumerating pathways linking source to sink in

a single iteration by firing rules computed from MetaNetX (provided in supplementary materials).

Among the 421 biomarkers, we found 27 biomarkers directly detectable by transcription factors,
and 415 pathways enabling the transformations of 164 different biomarkers into 76 different

effectors. Some of these results are presented in Supplementary Table S2.

Notable amongst the biosensor listed in Supplementary Table S2 are H,O, and glycine that are
detectable by the native E. coli transcription factors OxyR and GcevR, respectively (Tartaglia et al.,
1989; Stauffer and Stauffer, 1994), and benzoate for which biosensors have already been built in E.
coli (Libis et al., 2016) (detailed results are provided in the supplementary Table S2). Interestingly
several biomarkers could be transformed into the same effector, thus enabling the integration of

multiple biomarker signals into a unique detectable biosensor.

The choice of the enzymes or the transcription factors involved in SEMP biosensors is important
when one wishes the biosensor to be specific to a given analyte. Taking the example of N-acetyl-
aspartate from supplementary Table S2, some aspartate oxidase (1.4.3.16) transform also alternative
substrates, such as L-aspartate, but other will have no activity on aspartate and transform only N-
acetyl-aspartate (Tedeschi et al.,, 2010, p. 121). Another strategy to increase specificity is to
engineer multiple SMEP for a given analyte, for instance in supplementary Table S2, hippurate,

sarcosine and creatinine can each be detected by two transcription factors.

Examples of SEMP provided in Table S2 mostly involve only one enzyme, however RetroPath can
of course produce longer pathways, for examples of such pathways the reader can consult our

previous papers (Delépine et al., 2016; Libis et al., 2016).

The results presented in supplementary Table S2 highlight the versatile use that a generic

retrosynthesis and reaction network prediction algorithm can have beyond metabolic engineering.



SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURE S1
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Supplementary Figure S1 — Reactions rules for EC class 4.5.1.-. Hydrogen are omitted for simplicity thus O stands for H,O, Cl
for HCl and N for NHj3. The last rule (R6) does not apply 4.5.1.2 and 4.5.1.4 since in addition to the removal of chlorine these
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SUPPLEMENTARY FIGURE S2

0

EQL
- o

1.5.3.1
(0]
HO
~ PN
OH o OH
hydrogen glycine
peroxide

Supplementary Figure S2. Example of a scope obtained for sarcosine. All the products of the pathways are transcription factor
effectors (i.e. in the sink file, green squares). Reactions are given by their EC numbers.
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SUPPLEMENTARY FIGURE S3
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Supplementary Figure S3. Enumerated pathways for the production of ethylene glycol. Each pathway is
depicted by a distinct color. The final step of the pathway engineered in (Liu et al., 2013) is in red (B, A).
Enzymatic step 1.13.12.19 is also known as RXN-12538 (MetaCyc) and R09784 (Kegg). Compounds are
represented by their structures, and reactions by their EC numbers. Ethylene glycol and sink compounds

are surrounded by a solid line, others by a dashed line. Cofactors and currency metabolites (such as NADPH,
NADH, water, proton, dioxygen) have been removed for clarity. Involved compounds: ethylene glycol (A),
glycolaldehyde (B), ethylene oxide (C), ethylene (D) and oxoglutarate (E).
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SUPPLEMENTARY FIGURE S4
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Supplementary Figure S4. Receiving operating characteristic curves (ROC) curves for the rules of
RetroPath2.0 of diameter d = 8.
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Supplementary Figure S5. Box plot comparing the distribution of reaction scores for specialist and
generalist enzymes in E. coli.

12



SUPPLEMENTARY FIGURE S6
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Figure S6. Specificity of rules vs. promiscuity recovery in function of diameter. Rules specificity is
calculated as percentage of gene-specific rules (solid black line), which represents the percentage of the
total rules at a given diameter that are associated with a single gene in Escherichia coli. Promiscuity
recovery is calculated as rule gene-reaction coverage (red dotted line), which represents the average
maximum percentage of reactions associated with a gene that are covered by a rule at the given diameter.
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SUPPLEMENTARY TABLES

SUPPLEMENTARY TABLE S1

Supplementary Table S1 — Assignment of sequences to rules at different diameters and using decreasing EC class level of
specificity. Orphan SMARTS and reactions at a given EC level are the only ones that are considered for sequence assignment at a
lower level.

Diameter | EC level | SMARTS | Orphan_ SMARTS | Reactions | Orphan_reactions
2 8210 3680 13782 3259
2 4 8210 655 13782 823
2 3 8210 47 13782 86

2 2 8210 5 13782 12

2 1 8210 0 13782 0

4 10501 5141 13782 4377
4 4 10501 1058 13782 1280
4 3 10501 61 13782 90

4 2 10501 15 13782 25

4 1 10501 0 13782 0

6 12573 6806 13782 5593
6 4 12573 1466 13782 1661
6 3 12573 72 13782 96

6 2 12573 16 13782 25

6 1 12573 0 13782 0

8 13855 7898 13782 6280
8 4 13855 1719 13782 1918
8 3 13855 73 13782 97

8 2 13855 16 13782 25

8 1 13855 0 13782 0

10 14772 8603 13782 6611
10 4 14772 1836 13782 1863
10 3 14772 76 13782 99
10 2 14772 16 13782 25
10 1 14772 0 13782 0

12 15460 9134 13782 6874
12 4 15460 1936 13782 1846
12 3 15460 76 13782 94
12 2 15460 16 13782 25
12 1 15460 0 13782 0

14 15867 9433 13782 7007
14 4 15867 1975 13782 1856
14 3 15867 77 13782 98
14 2 15867 16 13782 25
14 1 15867 0 13782 0

16 16227 9741 13782 7159
16 4 16227 2025 13782 1811
16 3 16227 79 13782 72
16 2 16227 16 13782 24
16 1 16227 0 13782 0
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SUPPLEMENTARY TABLE S2

Supplementary Table S2 — Examples of metabolic pathways enabling the detection of prostate cancer biomarkers.
Supplementary Figure S2 illustrates the scope of sarcosine.

Biomarker

Metabolic Reaction

Effector(s)

References: Sample (S), Enzyme (E),
Transcription-Factor (TF)*

Hippuric
acid

o o
X - o
V/\[f o, N/\[(
—
o o

Benzoic
acid

Glycine

S: Urine down-regulated (Struck-
Lewicka et al., 2015)

E: hippurate hydrolase (3.5.1.32)

TF: benzoate BenR (Libis et al., 2016),
glycine GevR (Stauffer and Stauffer,
1994)

Kynurenine

o N o o
0 o o
Y
—
Q ) o
| ,

Glycine

Anthranilate

S: Serum, Urine, Tissue up-regulated
(Sreekumar et al., 2009)

E: glycine kynurenine-glyoxylate
aminotransferase (2.6.1.63), anthranilate
kynureninase (Jakoby and Bonner, 1953)
TF: glycine GevR (Stauffer and Stauffer,
1994) anthranilate AntR (Urata et al.,
2004, p. 10)

Sarcosine

\N

0 %U
Uﬁ) +0, + H0 —» N/\[( + + H,0,
o

[

Glycine

H,0,

S: Serum, Urine, Tissue up-regulated
(Sreekumar et al., 2009)

E: sarcosine oxydase (1.5.3.1)

TF: glycine GevR (Stauffer and Stauffer,
1994), H202: OxyR (Rubens et al.,
2016)

N-acetyl-
aspartate

H,0,

S: Serum, Urine, Tissue up-regulated
(Sreekumar et al., 2009)

E: aspartate oxydase (1.4.3.16)

TF: OxyR (Rubens et al., 2016)

Pipecolate

H,0,

S: Serum, Urine, Tissue up-regulated
(Sreekumar et al., 2009)

E: pipecolate oxydase (1.5.3.7)

TF: OxyR (Rubens et al., 2016)

Cholesterol

H,0,

S: Serum, Urine, Tissue down-regulated
(Sreekumar et al., 2009)

E: chlolesterol oxydase (1.1.3.6)

TF: OxyR (Rubens et al., 2016)

L-Sorbose

H,0,

S: Urine down-regulated (Lima et al.,
2016)

E: sorbose oxydase (1.1.3.13)

TF: OxyR (Rubens et al., 2016)

Creatinine

Urea

H,0,and
glycine via
sarcosine

S: Serum, Urine, Tissue down-regulated
(Sreekumar et al., 2009)

E: creatininase (1.1.3.13) followed by
creatine amidinohydrolase (3.5.3.3)

TF: urea NtcA (D’Orazio et al., 1996),
glycine GevR (Stauffer and Stauffer,
1994), H202: OxyR (Rubens et al.,
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2016)

* The column indicates the sample type (Serum, Urine, Metastasic Tissue) and if the biomarker has been found to be up or down regulated
compared to a controlled sample of the same type. References for enzymes were taken from MetaNetX and references for transcription factor were
taken from the SensiPath server (Delépine et al., 2016).

SUPPLEMENTARY DATA

RETROPATH2.0 WORKFLOW

RetroPath2.0 is provided as a KNIME workflow (RetroPath2.0.knwf file). Knime and RetroPath2.0
installation procedures are described in RetroPath2.0 installation.pdf. Updates for RetroPath2.0
will be hosted at MyExperiment.org (https://www.myexperiment.org/workflows/4987.html).

TUTORIAL & EXAMPLES

The RetroPath2.0 tutorial.pdf file can be used as a starting point for beginning with RetroPath2.0. It
is a step-by-step tutorial describing how to use the tool through basic retrosynthetic examples. Data for
examples are in the tutorial data folder.

ScopPe VIEWER

The Scope Viewer is a modest tool dedicated to the visualization of scope files outputted by RetroPath2.0. It
is available in the scope viewer folder.

SET OF SMARTS RULES

Several sets of SMARTS rules are provided in the data/rules subfolder. Files knime-ready-rules mnx-
all-forward ECOLI-iJ01366.csv and knime-ready-rules mnx-all-reverse ECOLI-
1J01366.csv are subsets of SMARTS rules we generated from reactions available in the MetaNetX
database. Both subsets correspond to the E. coli metabolism for diameters 2 to 16 (see main text). The first
set contains rules in the direct direction ([..]-forward-[..].csv file) while the second contains rules in
the reverse direction (for retrosynthesis, [..] -reverse-[..] .csv file). Extracted rules for BNICE (mono-
and bi-substrate rules) and Sympheny are also provided. All of the set of rules are ready to be used with
RetroPath2.0.

SET OF COMPOUNDS FROM E. COLI METABOLISM
The data/ecoli-1J01366-mnx-compounds.csv file contains the list of compounds that we extracted
from the E. coli 1JO1366 whole-cell model and MetaNetX cross-references. See main text for details.

COVERAGE OF BIOPRODUCTION PATHWAYS
Generated results are provided in the results/bioproduction pathways folder.

The bioproduction pathways/LASER MBE subfolder contains results regarding the compounds
extracted from the LASER database and Metabolic Engineering papers published in 2016 (see main text for
details). The laser.csv and mbe.csv files provide details on each compound (input subfolder). Scope
(*_scope.json file), enumerated pathways (*.png and pathways.csv files), and structures of involved

16



compounds (chemical structures.csv file) are listed in the pathways subfolder for each tested
compound that leads to at least one pathway.

The bioproduction pathways folder does also contain the whole scope computed for styrene
(styrene scope subfolder) and terephthalic acid (TPA subfolder) that are respectively shown by figure 4
and 5 of the paper. These scopes can be generated again using the source (source.csv), sink (sink.csv)
and rule (rules.csv) sets that belong to each folder.

DETECTION OF BIOMARKERS THROUGH METABOLIC CIRCUITS

Data are provided in the results/detectable biomarkers folder. The source file is composed of
prostate cancer metabolites. The sink file comprises effectors (small molecules) activating of inhibiting
transcription factors. Transcription factors are not provided but can easily be retrieved by entering the InChls
of the effectors in the SensiPath web server SensiPath.micalis.fr [1]. Table S2 in the main text was generated
from results extracted in the file result.csv (res folder). The .csv and .json files attached to each
biomarkers comprise a lower number of pathways than in the result.csv file, the reason is that in the
former case pathways are enumerated only when a// the products of the pathways are in the sink.

RP2PATHS OPEN SOURCE CODE FOR ENUMERATING PATHWAYS

The source code is available on GitHub in the “RP2paths” repository at https://github.com/brsynth/rp2paths ).
It is release under the MIT license (see https://opensource.org/licenses/MIT). Installation and documentation
information are provided within the repository (INSTALL.txt and README.md files) as well as some
examples (see examples folder).

In order to enumerate pathways from the LASER dataset, the following command was used (for a given
compound):

python RP2paths.py all target scope.csv --outdir pathways --notPathsStartingBy
$(cat list currency metabolites.txt)

where:

® target scope.csv is a result scope file outputted by RetroPath2.0 that describes the network linking
the targeted compound to the chassis.

® ‘—-outdir’ sets the path to the output folder

® ‘——notPathsStartingBy’ defines a list of compounds that do not want as to use as starting chassis
compound.”
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